	Answer	Marks	Guidance
1	$\frac{2 x}{x+1}-\frac{1}{x-1}=1$		
	$\Rightarrow 2 x(x-1)-(x+1)=(x+1)(x-1)$	M1	mult throughout by $(x+1)(x-1)$ or combining fractions and mult up oe (can retain denominator throughout). Condone a single computational error provided that there is no conceptual error. Do not condone omission of brackets unless it is clear from subsequent work that they were assumed.
	$\Rightarrow 2 x^{2}-3 x-1=x^{2}-1$	A1	any fully correct multiplied out form (including say, if 1's correctly cancelled) soi
	$\Rightarrow \quad x^{2}-3 x=0=x(x-3)$	DM1	dependent on first M1.For any method leading to both solutions. Collecting like terms and forming quadratic $(=0)$ and attempting to solve *(provided that it is a quadratic and $b^{2}-4 a c \geq 0$). Using either correct quadratic equation formula (can be error when substituting), factorising (giving correct x^{2} and constant terms when factors multiplied out), completing the square oe soi.*
	$\Rightarrow \quad x=0$ or 3	A1	for both solutions www.
			SC B1 for $x=0$ (or $x=3$) without any working SC B2 for $x=0$ (or $x=3$) without above algebra but showing that they satisfy equation SC M1A1M0 SCB1 for first two stages followed by stating $x=0$ SC M1A1M0 SCB1 for first two stages and cancelling x to obtain $x=3$ only.
		[4]	

3	$\frac{3 x+2}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{\left(x^{2}+1\right)}$		
$\Rightarrow \quad 3 x+2=A\left(x^{2}+1\right)+(B x+C) x$	M1	correct partial fractions	
$x=0 \Rightarrow 2=A$ coefft of $x^{2}: 0=A+B \Rightarrow B=-2$ coefft of $x: 3=C$	M1		
$\Rightarrow \quad \frac{3 x+2}{x\left(x^{2}+1\right)}=\frac{2}{x}+\frac{3-2 x}{\left(x^{2}+1\right)}$	M1	equating coefficients	
\Rightarrow	A1 least one of B, C correct		

$4 \begin{aligned} \frac{4}{x\left(x^{2}+4\right)} & =\frac{A}{x}+\frac{B x+C}{x^{2}+4} \\ & =\frac{A\left(x^{2}+4\right)+(B x+C) x}{x\left(x^{2}+4\right)} \end{aligned}$	M1	correct partial fractions
$\Rightarrow \quad 4=A\left(x^{2}+4\right)+(B x+C) x$	M1	
$x=0 \Rightarrow 4=4 A \Rightarrow A=1$	B1	$A=1$
coefft of x^{2} : $0=A+B \Rightarrow B=-1$	DM1	Substitution or equating coeffts
coeffts of x : $0=C$	A1	$B=-1$
$\Rightarrow \quad 4 \quad-1-x$	A1	$C=0$
$\Rightarrow \quad \overline{x\left(x^{2}+4\right)}=\frac{-}{x}-\overline{x^{2}+4}$	[6]	

$$
\begin{array}{ll}
5 & \frac{2 x}{x-2}-\frac{4 x}{x+1}=3 \\
\Rightarrow & 2 x(x+1)-4 x(x-2)=3(x-2)(x+1) \\
\Rightarrow & 2 x^{2}+2 x-4 x^{2}+8 x=3 x^{2}-3 x-6 \\
\Rightarrow & 0=5 x^{2}-13 x-6 \\
& =(5 x+2)(x-3) \\
\Rightarrow & x=-2 / 5 \text { or } 3 .
\end{array}
$$

M1
M1 A1

M1

Clearing fractions expanding brackets
 oe
 factorising or formula oe

Question		Answer	Marks	Guidance
$\mathbf{6}$	(i)	$\frac{x}{(1+x)(1-2 x)}=\frac{A}{1+x}+\frac{B}{1-2 x}$ $\Rightarrow \quad x=A(1-2 x)+B(1+x)$ $x=1 / 2 \Rightarrow 1 / 2=B(1+1 / 2) \Rightarrow B=1 / 3$ $x=-1 \Rightarrow-1=3 A \Rightarrow A=-1 / 3$	M1	A1 expressing in partial fractions of correct form (at any stage) and attempting to use cover up, substitution or equating coefficients Condone a single sign error for M1 only. www cao
A1	www cao (accept $\mathrm{A} /(1+\mathrm{x})+\mathrm{B} /(1-2 \mathrm{x}), \mathrm{A}=-1 / 3, \mathrm{~B}=1 / 3$ as sufficient for full marks without needing to reassemble fractions with numerical numerators)			

Question		Answer	Marks	Guidance
6	(ii)	$\begin{aligned} & \frac{x}{(1+x)(1-2 x)}=\frac{-1 / 3}{1+x}+\frac{1 / 3}{1-2 x} \\ & =\frac{1}{3}\left[(1-2 x)^{-1}-(1+x)^{-1}\right] \\ & =\frac{1}{3}\left[1+(-1)(-2 x)+\frac{(-1)(-2)}{2}(-2 x)^{2}+\ldots-\left(1+(-1) x+\frac{(-1)(-2)}{2} x^{2}+\ldots\right)\right] \\ & =\frac{1}{3}\left[1+2 x+4 x^{2}+\ldots-\left(1-x+x^{2}+\ldots\right)\right] \end{aligned}$ $=\frac{1}{3}\left(3 x+3 x^{2}+\ldots\right)=x+x^{2}+\ldots \text { so } a=1 \text { and } b=1$	M1 A1 A1 A1	correct binomial coefficients throughout for first three terms of either $(1-2 x)^{-1}$ or $(1+x)^{-1}$ oe ie $1,(-1),(-1)(-2) / 2$, not nCr form. Or correct simplified coefficients seen. $1+2 x+4 x^{2}$ $1-x+x^{2} \quad$ (or $1 / 3 /-1 / 3$ of each expression, ft their A / B) If $k\left(1-x+x^{2}\right)$ (A1) not clearly stated separately, condone absence of inner brackets (ie $1+2 x+4 x^{2}-1-x+x^{2}$) only if subsequently it is clear that brackets were assumed, otherwise A1A0. [ie $-1-x+x^{2}$ is A 0 unless it is followed by the correct answer] Ignore any subsequent incorrect terms or from expansion of $x(1-2 x)^{-1}(1+x)^{-1}$ www cao
		OR $\begin{aligned} x(1-x-2 & \left.x^{2}\right)=x\left(1-\left(x+2 x^{2}\right)\right) \\ & =x\left(1+x+2 x^{2}+(-1)(-2)\left(x+2 x^{2}\right)^{2} / 2+\ldots \ldots \ldots\right) \\ & =x\left(1+x+2 x^{2}+x^{2} \ldots \ldots \ldots\right) \\ & =x+x^{2} \ldots . . \text { so } a=1 \text { and } b=1 \end{aligned}$	M1 A2 A1	correct binomial coefficients throughout for (1-($\left.\mathrm{x}+2 \mathrm{x}^{2}\right)$) oe (ie $1,-1$), at least as far as necessary terms ($1+\mathrm{x}$) (NB third term of expansion unnecessary and can be ignored) $x(1+x) \text { www }$ ww cao
		Valid for $-1 / 2<x<1 / 2$ or $\|x\|<1 / 2$	B1 [5]	independent of expansion. Must combine as one overall range. condone $\leq \mathrm{s}$ (although incorrect) or a combination. Condone also, say $-1 / 2<\|x\|<1 / 2$ but not $x<1 / 2$ or $-1<2 x<1$ or $-1 / 2>x>1 / 2$

$\begin{aligned} 7 \text { (i) } \quad & v=\int 10 e^{-\frac{1}{2} t} d t \\ & =-20 e^{-\frac{1}{2} t}+c \\ & \text { when } t=0, v=0 \\ \Rightarrow & 0=-20+c \\ \Rightarrow \quad & c=20 \\ & \text { so } v=20-20 e^{-\frac{1}{2} t} \end{aligned}$	M1 A1 M1 A1 [4]	separate variables and intend to integrate $\begin{aligned} & -20 e^{-\frac{1}{2} t} \\ & \text { finding } c \end{aligned}$ cao
(ii) As $t \rightarrow \infty \quad \mathrm{e}^{-1 / 2 t} \rightarrow 0$ $\Rightarrow \quad v \rightarrow 20$ So long term speed is $20 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 [2]	ft (for their $c>0$, found)
$\begin{aligned} & \text { (iii) } \begin{aligned} & \frac{1}{(w-4)(w+5)}=\frac{A}{w-4}+\frac{B}{w+5} \\ &=\frac{A(w+5)+B(w-4)}{(w-4)(w+5)} \\ & \Rightarrow \quad 1 \equiv A(w+5)+B(w-4) \end{aligned} \\ & \begin{aligned} & w=4: 1=9 A \Rightarrow A=1 / 9 \\ & w=-5: 1=-9 B \Rightarrow B=-1 / 9 \\ & \Rightarrow \frac{1}{(w-4)(w+5)}=\frac{1 / 9}{w-4}-\frac{1 / 9}{w+5} \\ &=\frac{1}{9(w-4)}-\frac{1}{9(w+5)} \end{aligned} \end{aligned}$	M1 M1 A1 A1 [4]	cover up, substitution or equating coeffs $\begin{aligned} & 1 / 9 \\ & -1 / 9 \end{aligned}$
$\begin{aligned} & \text { (iv) } \frac{d w}{d t}=-\frac{1}{2}(w-4)(w+5) \\ & \Rightarrow \quad \int \frac{d w}{(w-4)(w+5)}=\int-\frac{1}{2} d t \\ & \Rightarrow \int\left[\frac{1}{9(w-4)}-\frac{1}{9(w+5)}\right] d w=\int-\frac{1}{2} d t \\ & \Rightarrow \frac{1}{9} \ln (w-4)-\frac{1}{9} \ln (w+5)=-\frac{1}{2} t+c \\ & \Rightarrow \frac{1}{9} \ln \frac{w-4}{w+5}=-\frac{1}{2} t+c \\ & \text { When } t=0, w=10 \Rightarrow c=\frac{1}{9} \ln \frac{6}{15}=\frac{1}{9} \ln \frac{2}{5} \\ & \Rightarrow \ln \frac{w-4}{w+5}=-\frac{9}{2} t+\ln \frac{2}{5} \\ & \Rightarrow \frac{w-4}{w+5}=e^{-\frac{9}{2} t+\ln \frac{2}{5}}=\frac{2}{5} e^{-\frac{9}{2} t}=0.4 e^{-4.5 t} * \end{aligned}$	M1 M1 A1ft M1 M1 E1 [6]	separating variables substituting their partial fractions integrating correctly (condone absence of c) correctly evaluating c (at any stage) combining lns (at any stage) www
(v) As $t \rightarrow \infty \quad \mathrm{e}^{-45 t} \rightarrow 0$ $\Rightarrow \quad w-4 \rightarrow 0$ So long term speed is $4 \mathrm{~m} \mathrm{~s}^{-1}$.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	

