Question	Answer	Marks	Guidance
1	$\frac{2x}{x+1} - \frac{1}{x-1} = 1$ $\Rightarrow 2x(x-1) - (x+1) = (x+1)(x-1)$	M1	mult throughout by $(x + 1)(x - 1)$ or combining fractions and mult up oe (can retain denominator throughout). Condone a single computational error provided that there is no conceptual error. Do not condone omission of brackets unless it is clear from subsequent work that they were assumed.
	$\Rightarrow 2x^2 - 3x - 1 = x^2 - 1$	A1	any fully correct multiplied out form (including say, if 1's correctly cancelled) soi
	$\Rightarrow x^2 - 3x = 0 = x(x - 3)$	DM1	dependent on first M1.For any method leading to both solutions. Collecting like terms and forming quadratic (= 0) and attempting to solve *(provided that it is a quadratic and $b^2 - 4ac \ge 0$).Using either correct quadratic equation formula (can be error when substituting), factorising (giving correct x^2 and constant terms when factors multiplied out), completing the square oe soi.*
	\Rightarrow $x = 0 \text{ or } 3$	A1	for both solutions www.
			SC B1 for $x = 0$ (or $x = 3$) without any working SC B2 for $x = 0$ (or $x = 3$) without above algebra but showing that they satisfy equation SC M1A1M0 SCB1 for first two stages followed by stating $x = 0$ SC M1A1M0 SCB1 for first two stages and cancelling x to obtain $x = 3$ only.
		[4]	

Question	r	Marks	Guidance
2	$\frac{x+1}{x^2(2x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{2x-1} = \frac{Ax(2x-1) + B(2x-1) + Cx^2}{x^2(2x-1)}$	B1	correct partial fractions
	$\Rightarrow x+1 = Ax(2x-1) + B(2x-1) + Cx^2$	M1	Using a correct method to find a coefficient (equating numerators and substituting oe or using cover-up) Condone omission of brackets only if brackets are implied by subsequent work. Must go as far as finding a coefficient. Not dependent on B1
	$x = 0, 1 = -B \Longrightarrow B = -1$	A1	B = -1 www
	$x = \frac{1}{2}, 1\frac{1}{2} = C/4 \Longrightarrow C = 6$	A1	C = 6 www
	x^2 coeffs: $0 = 2A + C \Longrightarrow A = -3$	A1	A = -3 www
	x+1 3 1 6		isw for incorrect assembly of partial fractions following correct
	$\rightarrow \frac{1}{x^2(2x-1)} = \frac{1}{x} = \frac{1}{x^2} = \frac{1}{2x-1}$		A,B,C
			SC $\frac{A}{x^2} + \frac{B}{2x-1}$ can get 2/5 max from B0 M1 A1 (for <i>B</i> =6) SC $\frac{Ax+B}{x^2} + \frac{C}{2x-1}$ can get B1 M1 A1 (<i>C</i> =6) and can continue for full marks if the first fraction is then split. SC $\frac{A}{x} + \frac{B}{x^2} + \frac{C+Dx}{2x-1}$ can get B1 M1 A1 A1 A1 (<i>C</i> =6, <i>D</i> =0)
		[5]	

3 $\frac{3x+2}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{(x^2+1)}$ $\Rightarrow 3x+2 = A(x^2+1) + (Bx+C)x$ $x = 0 \Rightarrow 2 = A$ coefft of $x^2 : 0 = A + B \Rightarrow B = -2$ coefft of x: $3 = C$	M1 M1 B1 M1 A1	correct partial fractions equating coefficients at least one of <i>B</i> , <i>C</i> correct
$\Rightarrow \qquad \frac{3x+2}{x(x^2+1)} = \frac{2}{x} + \frac{3-2x}{(x^2+1)}$	A1 [6]	

4 $\frac{4}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$ = $\frac{A(x^2+4) + (Bx+C)x}{x(x^2+4)}$	M1	correct partial fractions
$\Rightarrow 4 = A(x^{2} + 4) + (Bx + C)x$ $x = 0 \Rightarrow 4 = 4A \Rightarrow A = 1$ coefft of x^{2} : $0 = A + B \Rightarrow B = -1$ coeffts of x: $0 = C$ $\Rightarrow \frac{4}{x(x^{2} + 4)} = \frac{1}{x} - \frac{x}{x^{2} + 4}$	M1 B1 DM1 A1 A1 [6]	A=1 Substitution or equating coeffts B=-1 C=0

5	$\frac{2x}{x-2} - \frac{4x}{x+1} = 3$		
\Rightarrow	2x(x+1) - 4x(x-2) = 3(x-2)(x+1)	M1	Clearing fractions
\Rightarrow	$2x^2 + 2x - 4x^2 + 8x = 3x^2 - 3x - 6$	M1	expanding brackets
\Rightarrow	$0 = 5x^2 - 13x - 6$	A1	oe
⇒	= (5x + 2)(x - 3) x = -2/5 or 3.	M1 A1 cao [5]	factorising or formula

Question	Answer	Marks	Guidance
6 (i)	$\frac{x}{(1+x)(1-2x)} = \frac{A}{1+x} + \frac{B}{1-2x}$		
	$\Rightarrow x = A(1 - 2x) + B(1 + x)$	M1	expressing in partial fractions of correct form (at any stage) and attempting to use cover up, substitution or equating coefficients Condone a single sign error for M1 only.
	$x = \frac{1}{2} \Longrightarrow \frac{1}{2} = B(1 + \frac{1}{2}) \Longrightarrow B = \frac{1}{3}$	A1	www cao
	$x = -1 \Longrightarrow -1 = 3A \implies A = -1/3$	A1	www.cao
			(accept A/(1+x) +B/(1-2x), $A = -1/3$, $B = 1/3$ as sufficient for full marks without needing to reassemble fractions with numerical numerators)
		[3]	

Question		Answer	Marks	Guidance
6 (ii))	$\frac{x}{(1+x)(1-2x)} = \frac{-1/3}{1+x} + \frac{1/3}{1-2x}$		
		$= \frac{1}{3} \left[(1 - 2x)^{-1} - (1 + x)^{-1} \right]$	M1	correct binomial coefficients throughout for first three terms of
		$= \frac{1}{3} [1 + (-1)(-2x) + \frac{(-1)(-2)}{2}(-2x)^2 + \dots - (1 + (-1)x + \frac{(-1)(-2)}{2}x^2 + \dots)]$		either $(1-2x)^{-1}$ or $(1+x)^{-1}$ oe ie $1, (-1), (-1)(-2)/2$, not nCr form. Or correct simplified coefficients seen.
		$= \frac{1}{[1+2x+4x^2+(1-x+x^2+)]}$	A1	$1 + 2x + 4x^2$
		3	A1	$1 - x + x^2$ (or $1/3/-1/3$ of each expression, ft their A/B)
				If $k(1-x+x^2)$ (A1) not clearly stated separately, condone absence of inner brackets (ie $1+2x+4x^2-1-x+x^2$) only if subsequently it is clear that brackets were assumed, otherwise A1A0.
				[ie $-1-x+x^2$ is A0 unless it is followed by the correct answer] Ignore any subsequent incorrect terms
		$=\frac{1}{3}(3x+3x^2+)=x+x^2+$ so $a=1$ and $b=1$	A1	or from expansion of $x(1-2x)^{-1}(1+x)^{-1}$ www cao
		OR		correct binomial coefficients throughout for $(1-(x+2x^2))$ oe
		$x (1-x-2x^{2}) = x (1-(x+2x^{2}))$ = x (1 + x + 2x^{2} + (-1)(-2)(x + 2x^{2})^{2/2} +)	M1	(ie 1,-1), at least as far as necessary terms $(1+x)$ (NB third term of expansion unnecessary and can be ignored)
		$= x (1 + x + 2 x^{2} + x^{2} \dots)$	A2	x(1+x) www
		$= x + x^2$ so $a = 1$ and $b = 1$	A1	ww cao
		Valid for $-\frac{1}{2} < x < \frac{1}{2}$ or $ x < \frac{1}{2}$	B1	independent of expansion. Must combine as one overall range. condone \leq s (although incorrect) or a combination. Condone also, say $-\frac{1}{2} < x < \frac{1}{2}$ but not $x < \frac{1}{2}$ or $-1 < 2x < 1$ or $-\frac{1}{2} > x > \frac{1}{2}$

7(i) $v = \int 10e^{-\frac{1}{2}t} dt$ $= -20e^{-\frac{1}{2}t} + c$ when $t = 0, v = 0$ $\Rightarrow 0 = -20 + c$ $\Rightarrow c = 20$ so $v = 20 - 20e^{-\frac{1}{2}t}$	M1 A1 M1 A1 [4]	separate variables and intend to integrate $-20e^{\frac{-1}{2}t}$ finding <i>c</i> cao
(ii) As $t \to \infty$ $e^{-1/2 t} \to 0$ $\Rightarrow v \to 20$ So long term speed is 20 m s ⁻¹	M1 A1 [2]	ft (for their $c>0$, found)
(iii) $\frac{1}{(w-4)(w+5)} = \frac{A}{w-4} + \frac{B}{w+5}$ $= \frac{A(w+5) + B(w-4)}{(w-4)(w+5)}$ $\Rightarrow 1 \equiv A(w+5) + B(w-4)$ $w = 4: 1 = 9A \Rightarrow A = 1/9$ $w = -5: 1 = -9B \Rightarrow B = -1/9$ $\Rightarrow \frac{1}{(w-4)(w+5)} = \frac{1/9}{w-4} - \frac{1/9}{w+5}$ $= \frac{1}{9(w-4)} - \frac{1}{9(w+5)}$	M1 A1 A1 [4]	cover up, substitution or equating coeffs 1/9 -1/9
$(iv) \frac{dw}{dt} = -\frac{1}{2}(w-4)(w+5)$ $\Rightarrow \int \frac{dw}{(w-4)(w+5)} = \int -\frac{1}{2}dt$ $\Rightarrow \int [\frac{1}{9(w-4)} - \frac{1}{9(w+5)}]dw = \int -\frac{1}{2}dt$ $\Rightarrow \frac{1}{9}\ln(w-4) - \frac{1}{9}\ln(w+5) = -\frac{1}{2}t + c$ $\Rightarrow \frac{1}{9}\ln\frac{w-4}{w+5} = -\frac{1}{2}t + c$ When $t = 0, w = 10 \Rightarrow c = \frac{1}{9}\ln\frac{6}{15} = \frac{1}{9}\ln\frac{2}{5}$ $\Rightarrow \ln\frac{w-4}{w+5} = -\frac{9}{2}t + \ln\frac{2}{5}$ $\Rightarrow \frac{w-4}{w+5} = e^{\frac{9}{2}t+\ln\frac{2}{5}} = \frac{2}{5}e^{-\frac{9}{2}t} = 0.4e^{-4.5t} *$	M1 M1 A1ft M1 E1 [6]	separating variables substituting their partial fractions integrating correctly (condone absence of <i>c</i>) correctly evaluating <i>c</i> (at any stage) combining lns (at any stage) www
(v) As $t \to \infty e^{-45t} \to 0$ $\Rightarrow w - 4 \to 0$ So long term speed is 4 m s ⁻¹ .	M1 A1 [2]	